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ABSTRACT 
 

The spread of the SARS-CoV-2 into a global pandemic within a few months of onset 

motivates the development of a rapidly scalable vaccine. Here, we present a self-amplifying 

RNA encoding the SARS-CoV-2 spike protein encapsulated within a lipid nanoparticle as a 

vaccine and demonstrate induction of robust neutralization of a pseudo-virus, proportional to 

quantity of specific IgG and of higher quantities than recovered COVID-19 patients. These data 

provide insight into the vaccine design and evaluation of immunogenicity to enable rapid 

translation to the clinic.   

 

MAIN 

The unprecedented and rapid spread of SARS-CoV-2 into a global pandemic, with the 

current estimated number of confirmed cases >2.2 million people,1 has motivated the need for a 

rapidly producible and scalable vaccine. Coronaviruses are positive-sense, single stranded RNA 

viruses that cause disease pathology ranging from the common cold to pneumonia.2,3 Despite 

being listed on the WHO blueprint priority list, there are currently no licensed vaccines for SARS 

or MERS.4 However, previous studies have elucidated the need to stabilize coronavirus spike 

proteins in their pre-fusion conformation in order to serve as a vaccine immunogen.5 

Self-amplifying RNA (saRNA) encapsulated in lipid nanoparticles (LNP) is a highly 

relevant platform for producing vaccines in the context of a global pandemic as it’s possible to 

encode any antigen of interest6,7 and requires a minimal dose compared to messenger RNA 

(mRNA).8 The first RNA therapeutic, which is formulated in LNP, was approved in 2018 and has 

set the precedent for clinical safety of LNP-formulated RNA.9 

Here, we compare the immunogenicity of saRNA encoding a pre-fusion stabilized 

SARS-CoV-2 spike protein encapsulated in LNP in a preclinical murine model to the immune 

response generated by a natural infection in recovered COVID-19 patients. We characterize 

both the humoral and cellular response as well as the neutralization capacity of a pseudotyped 

SARS-CoV-2 virus. 

 

RESULTS 

After confirming expression of the pre-fusion stabilized SARS-CoV-2 spike protein in 

vitro (Supplementary Figure 1), mice were immunized with saRNA encoding the SARS-CoV-2 

spike protein encapsulated in LNP with doses ranging from 0.01 to 10 μg (Figure 1a). Mice 

received two injections, one month apart, and electroporated plasmid DNA (pDNA) was used as 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 25, 2020. ; https://doi.org/10.1101/2020.04.22.055608doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055608


   3

a positive control while saRNA encoding the rabies glycoprotein (RABV) in pABOL was used as 

a negative control. After 6 weeks, we observed remarkably high quantities of SARS-CoV-2 

specific IgG in mouse sera in a dose-responsive manner, ranging from 105-106 ng/mL (Figure 

1b). The groups that received doses of 10 and 1 μg of saRNA LNP were significantly higher 

than the mice that received 10 μg of electroporated pDNA, with p=0.0036 and 0.0020, 

respectively. All of the saRNA LNP-vaccinated mice, even the 0.01 μg group, had higher 

quantities of SARS-CoV-2 specific IgG compared to patients that had recovered from COVID-

19, which had a mean titer of 103 ng/mL and a range of 101-105 ng/mL. Importantly both the 

pDNA and saRNA LNP immunizations induced a Th1-biased response in mice (Supplementary 

Figure 2).  

We then sought to characterize how antibodies generated by immunization compared to 

those generated by a natural SARS-CoV-2 infection as far as capacity to neutralize a SARS-

CoV-2 pseudotyped virus (Figure 1c). We observed highly efficient viral neutralization that 

varied in a linear dose-dependent manner for the mice vaccinated with saRNA LNP, with IC50 

values ranging from 5x103 to 105. The groups that received 10 or 1 μg of saRNA LNP were 

significantly higher than the electroporated pDNA positive control group, both with p<0.0001. 

Comparison to the IC50 values of recovered COVID-19 patients, which had an average IC50 of 

103, revealed that even the lowest dose of saRNA LNP (0.01 μg) in mice induced higher SARS-

CoV-2 neutralization than a natural infection in humans.  

We then determined if there is a correlation between the quantity of SARS-CoV-2 

specific IgG and SARS-CoV-2 neutralization IC50 for both vaccinated mice and patients who 

have recovered from COVID-19. Both mice and patients have positive correlations between 

antibody level and viral neutralization, with R2= 0.88 and 0.87 and p<0.0001 and =0.0007, 

respectively, indicating that high antibody titers enable more efficient viral neutralization. We 

also tested the sera of vaccinated mice and recovered patients against other pseudotyped 

viruses, including SARS-CoV, MERS-CoV and 229E-CoV (Supplementary Figure 3), and 

observed slight neutralization of SARS-CoV by vaccinated mice sera, but otherwise no cross-

reactivity.  
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Figure 1. Antibody quantification and neutralization of a SARS-CoV-2 saRNA vaccinated mice 
compared to COVID-19 recovered patients. a) Schematic of vaccination of BALB/c mice with 
saRNA encoding pre-fusion stabilized spike protein in LNP, b) SARS-CoV-2 specific IgG 
responses in mice vaccinated with doses of LNP-formulated saRNA ranging from 0.01-10 μg of 
saRNA with n=7 and COVID-19 recovered patients with n=9, c) SARS-CoV-2 pseudotyped virus 
neutralization of sera from BALB/c mice vaccinated with doses of LNP-formulated saRNA 
ranging from 0.01-10 μg of saRNA with n=7 and COVID-19 recovered patients with n=9, d) 
Correlation between SARS-CoV-2-specific IgG and SARS-CoV-2 neutralization IC50 for 
vaccinated mice (n=7) and recovered COVID-19 patients (n=9). Electroporated pDNA (DNA + 
EP) was used as a positive control while saRNA encoding the rabies glycoprotein (RABV) in 
pABOL was used as a negative control (RABV control). * indicates significance of p<0.05.  
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 We also characterized the cellular response and induction of systemic cytokines in 

response to vaccination with saRNA LNP (Figure 2). We observed that splenocytes from 

vaccinated mice re-stimulated with a library of SARS-CoV-2 peptides yielded remarkably high 

IFN-� secretion as quantified by ELISpot (Figure 2a). The saRNA LNP groups that received 

0.01-10 μg ranged from 1,000-2,600 SFU/106 splenocytes, and the 1 and 10 μg groups were 

significantly higher than the EP pDNA positive control group, with p=0.0016 and 0.0078, 

respectively. The re-stimulated splenocyte secretions were also characterized with a panel of 

cytokines (Supplementary Figure 4), with notable increases in GM-CSF, IL-10, IL-12, IL-17a, IL-

21, IL-4, IL-5, IL-6, TNF-α, IP-10, MIP-1β and RANTES. 

 We further characterized the immune response by assessing the systemic cytokine 

response 4 hours after injection with LNP-formulated saRNA LNP (Figure 2b-g). The groups 

that received 10 and 1 μg of saRNA LNP had enhanced levels of IL-6, MIP-1β, RANTEs, IFN-β 

and IP-10 in the sera compared to the RABV control group, indicating that the LNP formulation 

enables the immunogenicity of the saRNA. Data from the complete cytokine panel is presented 

in Supplementary Figure 5.  
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Figure 2. Cellular and secreted cytokine responses to a SARS-CoV-2 saRNA LNP vaccine. a) 
Quantification of IFN-� splenocytes upon restimulation with SARS-CoV-2 peptides, expressed 
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as spot forming units (SFU) per 106 cells with n=7. Electroporated pDNA (EP pDNA) was used 
as a positive control while saRNA encoding the rabies glycoprotein (RABV) in pABOL was used 
as a negative control (RABV control). b-g) Cytokine profile in sera of mice 4 hours after 
vaccination with SARS-CoV-2 LNP vaccine with n=7. Remaining cytokines can be found in 
Supplementary Figure 5. 

 

 

DISCUSSION 

 Here we characterized the immunogenicity of a SARS-CoV-2 saRNA LNP vaccine 

compared to the immune response of a natural infection in COVID-19 recovered patients. We 

observed that two saRNA LNP immunizations induced remarkably high SARS-CoV-2 specific 

IgG antibodies in mice, with quantities that were superior to both EP pDNA and natural infection 

in humans, that were able to efficiently neutralize a pseudotyped virus. We also observed that 

the saRNA LNP vaccine induces a robust cellular response, which is partially enabled by the 

potent LNP formulation.  

 We observed that the saRNA-encoded pre-fusion stabilized spike protein of SARS-CoV-

2 used in these studies is highly immunogenic, yielding antibody titers >106 ng/mL (Figure 1), 

which is superior to what others have reported for subunit vaccines for the SARS, MERS and 

SARS-2 coronaviruses.10 Furthermore, we observed higher antibody titers, viral neutralization 

(IC50) and cellular response for LNP-formulated saRNA than electroporated pDNA, which we 

postulate is due to the potent LNP used in these studies, as previous comparisons between 

polyplex-formulated saRNA and EP pDNA have yielded similar immunogenicity.8 This is highly 

useful for translation as it means a potent LNP-formulated saRNA vaccine can be injected with 

a widely accepted syringe and needle, and does not require electroporation instrumentation, 

which we envision will enable more widespread vaccination to curb the spread of SARS-CoV-2.  

 The saRNA LNP vaccine presented in these studies elicited robust antibody and cellular 

responses, with a Th1 bias that we hypothesize will enable immunogenicity in humans. Ongoing 

studies are being carried out to characterize the potential for antibody dependent enhancement 

(ADE) of SARS-CoV-2 as has been observed for SARS and MERS,11,12 but the role of this 

phenomena in vaccine-induced immunity is not yet fully understood. Overall, we believe that 

these data inform the antigen design, formulation and preclinical evaluation of immunogenicity 

that will enable rapid translation of a SARS-CoV-2 vaccine to the clinic trials.  
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METHODS 

 

Vectors 

We used a plasmid vector to synthesize a self-amplifying RNA (saRNA) replicon, based on a 

Trinidad donkey Venezuelan equine encephalitis virus strain (VEEV) alphavirus genome. The 

viral structural proteins driven from the sub-genomic promoter were replaced by the surface 

‘spike’ glycoprotein of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2): GenBank accession number: QHD43416.1 with some modifications.13 The pre-fusion state 

of the spike glycoprotein was stabilized by proline substitutions of K968 and V969. We 

synthesized oligonucleotide fragments encoding the SARS-CoV-2 gene using GeneArt strings 

(Thermo Fisher Scientific) and assembled into the plasmid vector with NEB HiFi assembly (New 

England BioLabs). An expression plasmid expressing the same pre-fusion stabilized full length 

transmembrane protein used the pcDNA3.1 backbone and was directly synthesized and cloned 

into the vector by GeneArt (Thermo Fisher Scientific). A plasmid that expressed a soluble pre-
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fusion version was directly synthesized and cloned into the pcDNA3.1 backbone vector by 

GeneArt (Thermo Fisher Scientific). This soluble version ends at glutamine Q1208 of the pre-

fusion modified QHD43416.1 gene sequence followed by a GGGGSGGGGS linker, a T4 fibritin 

(foldon) trimerization motif, a further GGGGSGGGGS linker, the Myc tag, a GSGSGS linker and 

finally an 8xHIS tag to enable purification of the soluble recombinant protein. The RABV control 

saRNA was based on the Pasteur strain: GenBank accession number: NP_056796.1 with the 

F318V amino acid substitution to reduce glycoprotein binding to the neurotrophin receptor 

(p75NTR), a natural ligand. 

 

Recombinant soluble SARS-CoV-2 S expression and purification 

The plasmid expressing the soluble pre-fusion version of SARS-CoV-2 S was used to produce 

the recombinant protein using the FreeStyle™ 293 Expression System (Thermo Fisher 

Scientific), according to the manufacturer’s instructions. Conditioned medium was clarified by 

centrifugation and protein was sequentially purified by a HisTrap HP column and a HiPrep 16/60 

Sephacryl S-300 HR size exclusion chromatography (SEC) column (both from GE Healthcare). 

Purified protein was first analyzed by Native-PAGE and Western blot, and then filtered through 

a 0.22 μm membrane, aliquoted and stored at -80 °C. 

 

In Vitro Transcription of RNA 

Self-amplifying RNA encoding the pre-fusion stabilized SARS-CoV-2 was produced using in 

vitro transcription. pDNA was transformed into E. coli (New England BioLabs, UK), cultured in 

100 mL of Luria Broth (LB) with 100 μg/mL carbenicillin (Sigma Aldrich, UK). Plasmid was 

purified using a Plasmid Plus MaxiPrep kit (QIAGEN, UK) and the concentration and purity was 

measured on a NanoDrop One (ThermoFisher, UK). pDNA was linearized using MluI for 3h at 

37°C. Uncapped in vitro RNA transcripts were produced using 1 μg of linearized DNA template 

in a MEGAScript™ reaction (Ambion, UK) for 2h at 37°C, according to the manufacturer’s 

protocol. Transcripts were then purified by overnight LiCl precipitation at -20°C, centrifuged at 

14,000 RPM for 20 min at 4°C to pellet, washed with 70% EtOH, centrifuged at 14,000 RPM for 

5 min at 4°C and resuspended in UltraPure H2O (Ambion, UK). Purified transcripts were capped 

using the ScriptCap™ Cap 1 Capping System Kit (CellScript, WI, USA) for 2h at 37°C, according 

to the manufacturer’s protocol. Capped transcripts were purified by LiCl precipitation as 

described above, resuspended in RNA storage buffer (10 mM HEPES, 0.1 mM EDTA, and 100 

mg/mL trehalose) and stored at -80°C until further use.  
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Cell Culture & saRNA Transfection  

HEK293T/17 cells (ATCC) were cultured in complete Dulbecco’s Modified Eagle’s Medium 

(DMEM) (Gibco, Thermo Fisher Scientific) containing 10 % fetal bovine serum (FBS, Gibco, 

Thermo Fisher Scientific), 1 % L-glutamine and 1 % penicillin-streptomycin (Thermo Fisher 

Scientific) at 37°C, 5% CO₂. Cells were plated in a 12-well plate at a density of 0.75 x 106 cells 

per well 48 h prior to transfection. Lipofectamine MessengerMAX (Thermo Fisher Scientific) was 

used according to the manufacturer’s instructions for the transfection of SARS-CoV-2 saRNA.  

 

Flow Cytometry 

Twenty-four hours post transfection, cells were harvested and resuspended in 1 mL of FACS 

buffer (PBS + 2.5 % FBS) at a concentration of 1 x 107 cells /mL. One hundred microliters of the 

resuspended cells was added to a FACS tube and stained with 50 µL of Live/Dead Fixable 

Aqua Dead Cell Stain (Thermo Fisher Scientific) at a 1:400 dilution on ice for 20 min. Cells were 

then washed with 2.5 mL of FACS buffer and centrifuged at 1750 RPM for 7 min. After 

centrifugation, cells were stained with 2.5 µg of a SARS-CoV spike protein polyclonal antibody 

(PA1-41165, Thermo Fisher Scientific) for 30 min on ice before washing with 2.5 mL of FACS 

buffer and centrifuging at 1750 RPM for 7 min. Cells were then stained with 0.4 µg of FITC goat 

anti-rabbit IgG (BD Pharmigen) for 30 min on ice. After incubation, cells were washed with 2.5 

mL of FACS buffer, centrifuged at 1750 RPM for 7 min and resuspended with 250 µL of PBS. 

Cells were fixed with 250 µL of 3 % paraformaldehyde for a final concentration of 1.5 %. 

Samples were analyzed on a LSRForterssa (BD Biosciences) with FACSDiva software (BD 

Biosciences). Data were analyzed using FlowJo Version 10 (FlowJo LLC). 

 

Formulation of saRNA  

saRNA was encapsulated in LNP using a self-assembly process in which an aqueous solution 

of saRNA at pH=4.0 is rapidly mixed with an ethanolic lipid mixture.14 LNP used in this study 

were similar in composition to those described previously15,16, which contain an ionizable 

cationic lipid (proprietary to Acuitas)/phosphatidylcholine/cholesterol/PEG-lipid.  The proprietary 

lipid and LNP composition are described in US patent US10,221,127.  They had a mean 

hydrodynamic diameter of ∼75nm with a polydispersity index of <0.1 as measured by dynamic 

light scattering using a Zetasizer Nano ZS (Malvern Instruments Ltd, Malvern, UK) instrument 

and an encapsulation efficiency of >90% LNP.  
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RABV control group was formulated with 8 kDa pABOL at a ratio of polymer to RNA of 45:1 

(w/w) using the titration method as previously described.7 

 

Animals and immunizations 

BALB/c mice aged 6-8 weeks old were placed into groups of n = 7 or 8. Animals were handled 

and procedures were performed in accordance with the terms of a project license granted under 

the UK Home Office Animals (Scientific Procedures) Act 1986. All the procedures and protocols 

used in this study were approved by an animal ethical committee, the Animal Welfare and 

Ethical Review Body (AWERB). Groups of mice were injected intramuscularly (IM; quadriceps) 

with a 50 µL of vaccine saRNA formulations. For animals that were vaccinated with pDNA, 10 

µg of pDNA was injected in 50 µL PBS followed by electroporation (EP) using 5-mm electrodes 

using an ECM 830 square-wave electroporation system (BTX) (pulses: 100 V of positive and 

negative polarity at 1 pulse/s, 50 ms pulse). Animals were immunized at week 0, boosted with a 

second vaccination at week 4 and euthanized using a Schedule 1 method at week 6, at which 

time the spleens were removed and processed to single cells for use in assays. Serum samples 

were collected at two-week intervals. 

 

Recovered COVID-19 patient samples 

Serum samples were donated to the Communicable Diseases Research Tissue Bank, Section 

of Virology, Imperial College London, following written informed consent, by patients who had 

been infected with SARS-CoV-2. The tissue bank is approved by the National Research Ethics 

Service, South Central Committee Oxford C (Ref 15/SC/0089). 

 

IFN-γ ELISpots 

Assessment of the IFN-γ T cell response was performed using the Mouse IFN-γ ELISpotPLUS kit 

(Mabtech) following the manufacturer’s instructions. Briefly, anti-IFN-γ pre-coated plates were 

blocked with DMEM + 10% FBS for at least 30min, then cells were added at 2.5x105 cells/well 

for negative control (media only) and SARS-CoV-2 peptide pools (15-mers overlapping by 11; 

JPT Peptides) (1 µg/mL) in 200 µL final volume per well. The positive control wells contained 

5x104 cells/well in 200 µL final volume per well with 5 µg/mL of ConA. Plates were incubated 

overnight at 5% CO2, 37ºC incubator and developed as per the manufacturer’s protocol. Once 
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dried, plates were read using the AID ELISpot reader ELR03 and AID ELISpot READER 

software (Autoimmun Diagnostika GmbH). 

 

Antigen-specific Ig ELISA 

The antigen-specific IgG, IgG1 and IgG2a titres in mouse sera were assessed by a semi-

quantative ELISA as previously described.17 In brief, MaxiSorp high binding ELISA plates 

(Nunc) were coated with 100 μL/well of 1 μg/mL recombinant SARS-CoV-2 protein in PBS. For 

the standard IgG/IgG1/IgG2a, 3 columns on each plate were coated with 1:1000 dilution each of 

goat anti-mouse Kappa and Lambda light chains (Southern Biotech). After overnight incubation 

at 4ºC, the plates were washed 4 times with PBS-Tween 20 0.05% (v/v) and blocked for 1 h at 

37ºC with 200 μL/well blocking buffer (1% BSA (w/v) in PBS-Tween 20 0.05%(v/v)). The plates 

were then washed and the diluted samples or a 5-fold dilution series of the standard IgG (or 

IgG1 or IgG2) added using 50 μL/well volume. Plates were incubated for 1 h at 37ºC, then 

washed and secondary antibody added at 1:2000 dilution in blocking buffer (100 μL/well) using 

either anti-mouse IgG-HRP, anti-mouse IgG1-HRP or anti-mouse IgG2a-HRP (Southern 

Biotech). After incubation and washes, plates were developed using 50 μL/well SureBlue TMB 

(3,3', 5,5'-tetramethylbenzidine) substrate and the reaction stopped after 5 min with 50 μL/well 

stop solution (Insight Biotechnologies). The absorbance was read on a Versamax 

Spectrophotometer at 450 nm (BioTek Industries). 

 

Neutralization assay 

A HIV-pseudotyped luciferase-reporter based system was used to assess the neutralization 

ability of sera from vaccinated animals and recovered patients against SARS-CoV, SARS-CoV-

2, MERS-CoV and 229E-CoV, as previously described with modifications.18,19 In brief, CoV S-

pseudotyped viruses were produced by co-transfection of 293T/17 cells with a HIV-1 gag-pol 

plasmid (pCMV-Δ8.91, a kind gift from Prof. Julian Ma, St George’s University of London), a 

firefly luciferase reporter plasmid (pCSFLW, a kind gift from Prof. Julian Ma, St George’s 

University of London) and a plasmid encoding the S protein of interest (pSARS-CoV-S, pSARS-

CoV2-S, pMERS-CoV-S or p229E-CoV-S) at a ratio of 1:1.5:1. Virus-containing medium was 

clarified by centrifugation and filtered through a 0.45 μm membrane 72h after transfection, and 

subsequently aliquoted and stored at -80 °C. For the neutralization assay, heat-inactivated sera 

were first serially diluted and incubated with virus for 1 h, and then the serum-virus mixture was 

transferred into wells pre-seeded Caco2 cells. After 48h, cells were lysed and luciferase activity 
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was measured using Bright-Glo Luciferase Assay System (Promega). The IC50 neutralization 

was then calculated using GraphPad Prism (version 8.4). 

 

Cytokine measurement in splenocytes and sera 

Splenoctyes isolated from each individual mouse were plated into round bottom 96 well plates 

(1 x 106 per well in a 200 uL total volume) and cultured for 7 days with media alone, 5 ug / mL 

SARS-CoV-2 recombinant protein or 5 ug / mL ConA as a positive control. For the sera 

samples, mice were bled 4h after injection with SARS-CoV-2 LNP vaccine or control RABV 

vaccine and sera were collected. The cytokine response in each well was quantified with a 

custom 25-plex ProcartaPlex Immunoassay (ThermoFisher Scientific, UK) on a Bio-Plex 200 

System (Bio-Rad), according to the manufacturer’s instructions. 

 

Statistical analysis 

Graphs and statistics were prepared in GraphPad Prism (version 8.4). Statistical differences 

were analyzed using either a two-way ANOVA adjusted for multiple comparisons or a Kruskal-

Wallis test adjusted for multiple comparisons, with p<0.05 used to indicate significance.  

 

Data availability 

Raw data is available upon reasonable request from Imperial College London.  
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